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Surface Science,in press.

Quantum Dynamical Model of Laser/Surface-Induced
Predissociation: Multiphoton-Multiphonon
Processes and Photon/Phonon-Dressed States*

Jui-teng Lin and Thomas F. Georget
Department of Chemistry, University of Rochester

Rochester, New York 14627 USA

By the dynamical energy populations of a photon/phonon-dressed

quantum system, laser-stimulated surface predissociation (LSSPD) of

an adsorbed diatomic molecule, characterized by the laser pumping

rates, the phonon-induced damping factor (level width), the field

detuning, and the phase detuning (Landau-Zener form), is studied.

The optimal detunings for the enhancement of LSSPD are shown by the

numerical results of a set of coupled generalized quantum equations

(GQE). The important features of LSSPD and the possible predissocia-

tion of a multilevel multistate system via multiphoton-multiphonon

processes are discussed.
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1. Introduction

The interaction of laser radiation with matter (atoms and

molecules) of homogeneous systems, e.g., multiphoton dissociation

and ionization, have been intensely and systematically studied since

the tunable and high-power lasers arrived at the beginning of the

1970's. The study of the influence of lasers on the dynamics of

heterogeneous gas/surface systems, however, is still in its infancy. 
2-14

The complexity of laser-stimulated surface processes (LSSP) is not only

due to the heterogeneity of the system (where the many-body effects

of the surface atoms are essential) but also due to the laser-stimulated

(or enhanced) dynamical phenomena of the adspecies, e.g., surface

migration, desorption, decomposition, predissociation, recombination

and other surface rate processes.

The influence of IR radiation (with vibrational excitations)

in LSSP has been theoretically studied in our laboratory. Some of

the important features and the related methodology in our previous

model systems are:
14

(1) The average excitation (photon energy absorbed) of the ac-

tive mode, the absorption cross section (or the line shape) and the

pumping rate of the radiation are characterized by the field intensity

and detuning, the T1 and T2 relaxation factors, the phonon coupling

factor and nonlinear effects due to the anharmonicity. The results

have been obtained either by a quantum approach (in the Heisenberg-
6-8

Markovian picture) or by a stochastic classical approach via the

generalized Langevin theory. 
1 1-1 3
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(2) The mechanism of laser-controlled surface phenomena (selec-

tive desorption and migration) may be investigated by combining the

Langmuir kinetic equation with the laser rate equation (in the energy

space) or generalized master equation (in the energy plus lattice

site space).
5

(3) By using Heisenberg equations of motion (in the rotating-

wave approximation), we are able to find the dynamical level popula-

tions of different normal modes and investigate the nature of LSSP,

mode-selective, local heating (molecular-selective) or simply thermal

(nonselective) heating of the system.
9 '1 0

In this paper, we shall study another aspect of LSSP, namely

laser-stimulated surface predissociation (LSSPD), by investigating

the synergistic effects of surface and two lasers, providing both

vibrational and electronic transitions of the adspecies, which may

dissociate only with negligible probability (at low temperature) in

the presence of the surface or a single laser. Since the phonon-

induced damping factor and the surface potentials of the adspecies

are not experimentally available to date, instead of focusing on a

specific real system we shall study the general dynamical feature

of LSSPD by using parameterized quantities. The main purpose of the

present paper, therefore, is to predict and suggest some possible

enhancement mechanism of LSSPD for real systems based on the result-

ing feature of a model system.
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2. LSSPD of Photon/Phonon-Dressed Multilevel System

We consider a heterogeneous model system consisting of an optically

active mode and a group of inactive modes (phonon modes plus the in-

active modes of the adspecies) and subject to two lasers of different

frequencies. While the active mode is vibrationally excited by the

first laser (IR), the adspecies is also electronically excited by

the second laser (UV or visible), where the curve crossings among the

electronic states in turn cause the vi"rational predissociation of

the adspecies (diatomic molecule) on the solid surface. When the

species is adsorbed (particularly in the case of chemisorption) on

a solid surface, its vibrational levels may be shifted and broadened

not only by its intramolecular anharmonic coupling but also by the

phonon coupling (usually, multiphonon processes) and the dynamical

coupling, e.g., surface migration-induced or collision-induced.
6

The time-dependent Schr~dinger equation of the photon/phonon-

dressed state may be written as

LH H,

Heff is the effective field-free Hamiltonian of the phonon-dressed

0

state characterized by a complex form

H_ (2)
0I.

m -- 1.I



-4-

where H is the unperturbed molecular Hamiltonian, and 6w and y
0Mn mn

are, respectively, the frequency-shift and the level-broadening

(damping factor) of the phonon-dressed state irn> [m and n represent

the m-th electronic and the n-th vibrational states, respectively].

Considering only the dominant factor of the frequency-shift and the

level-broadening, i.e., via multiphonon coupling, these two phonon
8,10,15

parameters may be expressed by

-(3a)

(3b

T/f C4 - 6 (3c)

where K is the coupling factor; p and wj are the density of states

and frequencies of the phonon modes, respectively; p is the smallest

order of the multiphonon coupling given by the conservation of energy

p a W mn/D ; WD and w mn are the Debye frequency and the frequency of

the active mode (for a transition between states Im,n+l> and Im,n>),

respectively; and T is the surface temperature.

The interaction Hamiltonian which couples the active mode with

the lasers is given by

V.OL A 2 (4)

where V1 C uPE (due to the first laser) is proportional to the deriva-

tive of the dipole moment, u6, (with respect to the active-mode normal
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coordinate) and V = uE2 (due to the second laser) is proportional

to the dipole moment of the excited species, u. E1 and E2 are the

envelopes of the electric field (assumed to be slowly varying or con-

stant in time) of the first laser for vibrational excitation (with

frequency wi) and of the second laser for electronic excitation (with

frequency w2 ), respectively.

Using this photon phonon-dressed state governed by a complex

effective Hamiltonian, we may then introduce the generalized quantum

equations of motion (GQE) in the Heisenberg-Markovian picture and

the rotating-wave approximation (RWA):

TYI

0

where W aR(t) ] is the real part of the diagonal element of the field-mn

free phonon-dressed effective Hamiltonian Heff is the basis-state
0

representation of the unperturbed vibronic state 4 0(r,R); r and R

represent the coordinates of the electrons and of the nucleus, re-

spectively; 6m'm and 6n'm are Kronecker delta functions assigned for

the first and second lasers which cause vibrational (m'=m) and elec-

tronic (n'=n) transitions, respectively.

We note that GQE [eq.(5)] reduces to the usual Heisenberq equa-

tions of motion (in RWA) 16 in the atomic viewpoint, i.e., where one
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atom is viewed as perturbed by another atom and W mn(R) is a complex

time-independent quantity, W mn(R) = Emn- i1tymn/2, and by using the

transformation Cmn(t) =Cmn(t)exp[ymnt/2],

'(7)

Furthermore, GQE may be reduced to the semiclassical equations of
17

motion (in the molecular viewpoint) for phonon-free case, i.e.,

Ym=. It is also worth noting that the equations of motion in the

molecular viewpoint may be developed by simply including the secular

terms on the right-hand side of eq. (7) and using the transformation

1k)= J )V 1t (8)
0

3. LSSPD of a Two-Level Two-State System

GQE shown in eq. (5), describing a multilevel (vibrational) multi-

state (crossing electronic curves) photon/phonon-dressed system, is

in general characterized by multiphoton-multiphonon processes. These

coupled first-order differential equations in principle may be de-
18

coupled into a single high-order differential equation, or solved
10

by the Laplace transform technique. However, the analytic solutions

are not usually available due to the vibrational couple terms but

also due to the time-dependent classical trajectory factor Wmn[R(t)].

To investigate the synergistic effects of the lasers and the surface

phonons by some tractable means, we shall consider the physical situa-

tion that the adspecies may be predissociated by absorbing two photons

(one IR and one UV, or visible photon). We shall also assume that
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there is only one electronic curve crossing (or one of the crossings

contributes the dominate predissociation channels).

For a two-level two-state system, GQE [eq. (5)] reduces to a set

of coupled equations of the amplitude vectors Cll(t), Cl 2 (t) and

C (t) representing the states of bound-ground, bound-excited and2c

the continuum (predissociated) states, respectively:

j-- V - 2 (9a)

T/7 ( d 1 )C N(r2)
CIII (9b)

(9c)

The pumping rates V and G are given by [from eq.(6.a)], V=V12 E
and G = V2c .E2; y is the level width of the phonon-dressed upper

12 2'

level referred to as the damping factor of the pumped system; A = -

is the field detuning with wA the fundamental frequency of the phonon-

dressed state; and x= (S 2 -S 1 )v 0 /Ti is the phase detuning obtained by

the usual Landau-Zener model, i.e., W2 c(R)-W1 2 R)-iw 2 .c(t. 17 There

are some important features of the above coupled equations:

(i) The two-photon predissociation processes are two-step excitations

governed by the pumping rates V (due to the first laser) and G (due

to the second laser), (ii) due to the damping factor y (energy sink),

both the populations of the bound state IC1 1 (t){ 2 and IC1 2 (t) 2 are

decaying, while the probability of predissociation PD(t)= IC 2 c(t) 2

will rise to a saturated value, and (iii) the oscillatory behavior

due to the phase detuning [exp(iat 2 ) ] is significantly different from

-- - i
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that of the field detuning [exp(-it) ], and we shall see later that

the corresponding optimal detunings show different character.

The analytical solutions of the coupled equations are available

in some specific situations where one may use perturbation methods.

However, we are more interested in the exact solutions which are

available by using numerical method, for e.g., Runge Kutta. The

numerical results of the level population P IC2(t) 2 (for photon

energy deposited in the active mode), the predissociation probability

PD = 1C2 c(t) 2 and the energy population of the phonon (bath) modes

PB = 1- ICl(t) - PA -P are shown in Figs. 1-4. There are five

parameters characterizing the dynamical feature of LSSPD: (V,G,y,A,,).

For systematic analysis of the numerical results, we investigate the

following physical features:

(i) Fig. 1 shows the effect of the phase detuning a (for y=O) on the

steady-state predissociation probability (PD5 ') . It is seen thatD|
instead of a=O, the optimal phase detunings for PDS5S having peak

D

values are cx*- ±1.0 anda * = +3.5; and for IJ>3.5, the values of

PDs " show exponential decaying. This is a significantly different

feature from that of the field detuning, where there are no dips in

the absorption profile and the optimal detunings are A*=O for a two-

level system while A*>O (red-shift) for a multilevel system with

anharmonic nonlinear effects.
6'7

(ii) The effect of the phonon-induced damping factor (y) is shown in

Fig. 2(A)-(D), for (V,G,A,y,a)= (4,1,A*,y,*) with the optimal

detunings A*=O and a*=3.5 and the damping factor increasing from Y=0
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(surface free) to y= 1 (strong phonon coupling).

(iii) The effect of the phase detuning on the dynamical populations

and the time-dependent predissociation is shown in Fiq.3(A)-(B), for

the cases of exact phase resonance (a=0) and far-off resonance (a=9).
S.S. S.S.

We note that P D 0.06 for a=O, and P D 0.15 for a=9.

(iv) Finally, we show the high Rabi oscillation cases (governed by

the first laser pumping rate V) for y=0 and y=0.l with the other op-

timal phase detuning a*=l. The other important physical quantity is

the mean predissociation rate which may be approximately defined as

R =PS'/t*, with t* being the rising time of the predissociation

probability PD(t). We can estimate,from Fig.2(C) and 2(D), that the

mean predissociation rates (per unit time of l/G) decrease from

= =0.21 to R =0.14 when the damping factor increases from y=0.l to

y=i.

4. Discussion and Conclusion

As an extension of the model system described in the previous

section, we shall now suggest a possible enhancement of surface pre-

dissociation of a multilevel (vibrational) and multistate (electronic

curve-crossing) system via the combination of two lasers as follows:

(1) LSSPD may be enhanced by absorbing two laser photons where

the optimal detuning condition (A=A* and c=a*) is available when both

lasers (with frequencies Wi and w2 ) are tunable.

(2) Effective predissociation channels induced by surface mag-

netic field can be opened in the absorption of one or few IR photons,

i.e., preparing the adspecies in a vibrational level above the highest

surface-split electronic states 19 and providing the external photon
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energy source to balance the energy loss due to the phonon coupling

of the adspecies. We note that in this case the net enhancement of

LSSPD is governed by the competition between the surface-split (which

opens more possible predissociation channels) and the surface-induced

energy damping. Therefore, the gaining of a significant steady-state

predissociation PD or the rate of predissociation R is governed by
D

the competition between the (IR) multiphoton and the (surface) multi-
8phonon processes, and moreover by the coupling strength of the Landau-

Zener local transition probability characterized by the pumping rate

of the second laser (G) and the phase detuning (a).
1 7

(3) For a multilevel-multistate system (see Fig.5), the enhance-

ment of LSSPD may also be generated by multiphoton processes where

the average excitation of the multilevel active mode (with energy

population governed approximately by a Poisson distribution)
6'20

matches one of the peak values of the Franck-Condon factors which show

structure patterns as a function of the vibrational level.
21

In conclusion, we have shown, by the numerical solutions of

a set of coupled GQE, how the synergistic effect of two lasers and

the surface phonons on the dynamical feature of LSSPD are character-

ized by the pumping rates (V,G), the multiphonon coupling factor

(y), the field detuning (A) and the phase detuning (a). For sig-

nificant enhancement of LSSPD, we expect a small ratio of y:V and match-

ing detunings to the optimal condition, i.e., A=A* and a=a*.

We are grateful to Drs. M. Hutchinson and K. S. Lam for their helpful
discussions.
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Figure Captions

Fig. 1. The steady-state predissociation probability (P S.S.) as

a function of the phase detuning (a) for (V,G,y,A)= (4,1,0,0).

V,G,y and A are the pumping rates, phonon-induced damping factor

and the field detuning, respectively.

Fig. 2. The time evolutions of the energy populations of the active

mode (PA) and the phonon(bath) modes (PB ), and the predissociation

probability (PD) for (V,G,y,A,a)= (A) (4,1,0,0,0) [phonon-free at exact

resonance], (B) (4,1,0,0,3.5) [phonon-free at optimal detuning],

(C) (4,1,0.1,0,3.5) [weak phonon-coupling], and (D) (4,1,1,0,3.5)

[strong phonon-coupling].

Fig. 3. The dynamical feature of PA' B and P for (V,G,y,A,)=
A B D

(A) (4,1,0.5,0,0) (exact resonance with phonon-coupled], (B(4,1,0.5,0,9)

[far-off phase detuning].

Fig. 4. The dynamical feature of PA' PB and PD for the cases of high

Rabi frequency (pumping rate V) with (V,G,y,A,a)= (A) (10,1,0.1,0,1),

for phonon-coupled and (B) (10,1,0,0, 1), for phonon-free system.

Fig. 5 (A) Schematic energy diagrams of a multilevel-multistate system

subject to two lasers with frequencies w and w', respectively.

(B) The vibrational energy population of the photon/phonon-dressed

state Pn vs. n (vibrational quantum number).

(C) The structure pattern of the Franck-Condon factors for a multistate

(curve-crossing) system.
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